New lower bounds for constant weight codes

نویسندگان

  • Cornelis L. M. van Pul
  • Tuvi Etzion
چکیده

with M (which is expected). However, as M increases beyond Ahstrart -Some new lower bounds are given for A(n,4, IV), the maximum number of codewords in a binary code of length n, min imum distance 4, and constant weight IV. In a number of cases the results significantly 1.0 improve on the best bounds previously known. h=O 1 .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New explicit binary constant weight codes from Reed-Solomon codes

Binary constant weight codes have important applications and have been studied for many years. Optimal or near-optimal binary constant weight codes of small lengths have been determined. In this paper we propose a new construction of explicit binary constant weight codes from q-ary ReedSolomon codes. Some of our binary constant weight codes are optimal or new. In particular new binary constant ...

متن کامل

Constant Weight Codes with Package CodingTheory.m in Mathematica

The author offers the further development of package CodingTheory.m [1] in the direction of research of properties and parameters of Constant weight codes (lower and upper bounds) based on works [2], [3] and also using the Table of Constant Weight Binary Codes (online version, Neil J. A. Sloane: Home Page http://www.research.att.com/~njas/codes/Andw/) and the table of upper bounds on A(n, d, w)...

متن کامل

Bounds on the Sizes of Constant Weight Covering Codes

Motivated by applications in universal data compression algorithms we study the problem of bounds on the sizes of constant weight covering codes. We are concerned with the minimal sizes of codes of length n and constant weight u such that every word of length n and weight v is within Hamming distance d from a codeword. In addition to a brief summary of part of the relevant literature, we also g...

متن کامل

Bounds on the Size and Asymptotic Rate of Subblock-Constrained Codes

The study of subblock-constrained codes has recently gained attention due to their application in diverse fields. We present bounds on the size and asymptotic rate for two classes of subblock-constrained codes. The first class is binary constant subblock-composition codes (CSCCs), where each codeword is partitioned into equal sized subblocks, and every subblock has the same fixed weight. The se...

متن کامل

Upper Bounds for Constant - Weight

| Let A(n; d; w) denote the maximum possible number of codewords in an (n; d; w) constant-weight binary code. We improve upon the best known upper bounds on A(n; d; w) in numerous instances for n 6 24 and d 6 10, which is the parameter range of existing tables. Most improvements occur for d = 8; 10, where we reduce the upper bounds in more than half of the unresolved cases. We also extend the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 35  شماره 

صفحات  -

تاریخ انتشار 1989